Adsorbing a PVDF polymer via noncovalent interactions to effectively tune the electronic and magnetic properties of zigzag SiC nanoribbons.
نویسندگان
چکیده
On the basis of first-principle computations, we first propose a simple and effective strategy through surface-adsorbing a poly(vinylidene fluoride) (PVDF) polymer via noncovalent interactions to tune the electronic and magnetic behaviors of zigzag SiC nanoribbons (zSiCNRs). It is revealed that depositing the strong electron-withdrawing PVDF polymer with a permanent dipole moment can induce the evident change of the electrostatic potential in the substrate zSiCNRs, like applying an electric field. As a result, this kind of noncovalent surface-modification by a polymer can break the magnetic degeneracy of zSiCNRs independent of the adsorption type and position, and sole ferromagnetic metallicity and even antiferromagnetic half-metallicity can be achieved. Moreover, all PVDF-modified zSiCNR systems can exhibit considerable adsorption energies in the range of -0.436 to -1.315 eV, indicating that these joint systems possess high structural stabilities. These intriguing findings will be advantageous for promoting excellent SiC-based nanomaterials in the applications of spintronics and multifunctional nanodevices in the near future.
منابع مشابه
Molecular charge transfer by adsorbing TCNQ/TTF molecules via π-π interaction: a simple and effective strategy to modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons.
By means of first-principles computations, we first propose a simple and effective strategy through the molecular charge transfer via noncovalent π-π interaction to modulate the electronic and magnetic properties of zigzag SiC nanoribbons (zSiCNRs). This charge transfer is induced by adsorbing the electron-withdrawing/donating tetracyanoquinodimethane (TCNQ) or tetrathiafulvalene (TTF) molecule...
متن کاملSpin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملبررسی خواص مغناطیسی ریزساختارهای نانومتری گرافینی و نانوروبانهای گرافینی زیگزاگ
The discovery of graphene and its remarkable electronic and magnetic properties has initiated great research interest in this material. Furthermore, there are many derivatives in these graphene related materials among which graphene nanoribbons and graphene nanofragments are candidates for future carbon-based nanoelectronics and spintronics. Theoretical studies have shown that magnetism can ari...
متن کاملElectronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study
The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...
متن کاملA computational investigation on NMR Characterization and electronic properties of some zigzag nanotubes
DFT calculations were applied to evaluate the electronic and magnetic properties of zigzag BC2Nnanotubes based on the 13C, 15N, and 11B NMR parameters and natural charge analysis. Weconsidered three types of zigzag nanotubes, ZZ-1, ZZ-2, and ZZ-3 (n, 0) with n = 8, 12, and 14. Theobtained results indicated the divisions of the electrostatic environments around C nuclei into a fewlayers, consist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 37 شماره
صفحات -
تاریخ انتشار 2015